Properties

Label 45T383
45T383 1 7 1->7 22 1->22 2 8 2->8 24 2->24 3 9 3->9 23 3->23 4 28 4->28 42 4->42 45 4->45 5 30 5->30 40 5->40 43 5->43 6 29 6->29 41 6->41 44 6->44 13 7->13 16 7->16 19 7->19 14 8->14 18 8->18 20 8->20 15 9->15 17 9->17 21 9->21 10 10->13 10->44 11 11->15 11->45 12 12->14 12->43 13->20 32 13->32 14->19 33 14->33 15->21 31 15->31 16->12 16->24 17->10 17->22 18->11 18->23 19->6 36 19->36 20->5 34 20->34 21->4 35 21->35 22->11 23->10 24->12 25 25->3 25->31 25->44 26 26->1 26->32 26->43 27 27->2 27->33 27->45 28->26 28->41 29->27 29->40 30->25 30->42 31->3 32->2 33->1 38 34->38 34->42 35->36 39 35->39 35->40 37 36->37 36->41 37->17 37->32 38->18 38->31 39->16 39->33 40->39 41->38 42->37 43->30 44->28 45->29
Degree $45$
Order $5400$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_{15}^2:(C_2\times D_6)$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(45, 383);
 

Group invariants

Abstract group:  $C_{15}^2:(C_2\times D_6)$
Copy content magma:IdentifyGroup(G);
 
Order:  $5400=2^{3} \cdot 3^{3} \cdot 5^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $45$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $383$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,7,19,36,37,17,10,44,28,26)(2,8,20,34,38,18,11,45,29,27)(3,9,21,35,39,16,12,43,30,25)(4,42)(5,40)(6,41)(13,32)(14,33)(15,31)$, $(1,22,11,15,21,4,28,41,38,31,3,23,10,13,20,5,30,42,37,32,2,24,12,14,19,6,29,40,39,33)(7,16)(8,18)(9,17)(25,44)(26,43)(27,45)(35,36)$, $(4,45)(5,43)(6,44)(7,13)(8,14)(9,15)(16,24)(17,22)(18,23)(25,31)(26,32)(27,33)(34,42)(35,40)(36,41)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_2^2$ x 7
$6$:  $S_3$ x 2
$8$:  $C_2^3$
$12$:  $D_{6}$ x 6
$24$:  $S_3 \times C_2^2$ x 2
$36$:  $S_3^2$
$72$:  12T37
$108$:  $C_3^2 : D_{6} $
$216$:  18T94
$300$:  $((C_5^2 : C_3):C_2):C_2$
$600$:  30T127
$1800$:  45T212

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $S_3$

Degree 5: None

Degree 9: $C_3^2 : D_{6} $

Degree 15: $((C_5^2 : C_3):C_2):C_2$

Low degree siblings

45T383

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

58 x 58 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed