Show commands: Magma
Group invariants
| Abstract group: | $C_{15}^2:(C_2\times D_6)$ |
| |
| Order: | $5400=2^{3} \cdot 3^{3} \cdot 5^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $45$ |
| |
| Transitive number $t$: | $383$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,7,19,36,37,17,10,44,28,26)(2,8,20,34,38,18,11,45,29,27)(3,9,21,35,39,16,12,43,30,25)(4,42)(5,40)(6,41)(13,32)(14,33)(15,31)$, $(1,22,11,15,21,4,28,41,38,31,3,23,10,13,20,5,30,42,37,32,2,24,12,14,19,6,29,40,39,33)(7,16)(8,18)(9,17)(25,44)(26,43)(27,45)(35,36)$, $(4,45)(5,43)(6,44)(7,13)(8,14)(9,15)(16,24)(17,22)(18,23)(25,31)(26,32)(27,33)(34,42)(35,40)(36,41)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 2 $8$: $C_2^3$ $12$: $D_{6}$ x 6 $24$: $S_3 \times C_2^2$ x 2 $36$: $S_3^2$ $72$: 12T37 $108$: $C_3^2 : D_{6} $ $216$: 18T94 $300$: $((C_5^2 : C_3):C_2):C_2$ $600$: 30T127 $1800$: 45T212 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: None
Degree 9: $C_3^2 : D_{6} $
Degree 15: $((C_5^2 : C_3):C_2):C_2$
Low degree siblings
45T383Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
58 x 58 character table
Regular extensions
Data not computed