Subgroup ($H$) information
| Description: | $C_{10}$ | 
| Order: | \(10\)\(\medspace = 2 \cdot 5 \) | 
| Index: | \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \) | 
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) | 
| Generators: | $bc^{3}d^{12}e^{10}, d^{3}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $C_{15}^2:(C_2\times D_6)$ | 
| Order: | \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \) | 
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5^2.\He_3.C_4.C_2^3$ | 
| $\operatorname{Aut}(H)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $45$ | 
| Möbius function | $0$ | 
| Projective image | $C_{15}^2:(C_2\times D_6)$ | 
