Properties

Label 53240.v.13310.a1.c1
Order $ 2^{2} $
Index $ 2 \cdot 5 \cdot 11^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 9 & 5 & 2 & 0 \\ 9 & 9 & 6 & 0 \\ 5 & 8 & 8 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 6 & 10 & 0 & 0 \\ 1 & 0 & 10 & 0 \\ 0 & 10 & 6 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $\He_{11}:(C_5\times Q_8)$
Order: \(53240\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{3} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}:(C_5\times \GL(2,3))$, of order \(319440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{11}:C_{20}$
Normalizer:$C_{44}.C_{10}$
Normal closure:$\He_{11}:C_4$
Core:$C_1$
Minimal over-subgroups:$C_{44}$$C_{20}$$Q_8$
Maximal under-subgroups:$C_2$
Autjugate subgroups:53240.v.13310.a1.a153240.v.13310.a1.b1

Other information

Number of subgroups in this conjugacy class$121$
Möbius function$0$
Projective image$\He_{11}:(C_5\times Q_8)$