Properties

Label 53240.v.53240.a1.a1
Order $ 1 $
Index $ 2^{3} \cdot 5 \cdot 11^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(53240\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{3} \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary (for every $p$), hyperelementary, metacyclic, and a Z-group), stem, a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $\He_{11}:(C_5\times Q_8)$
Order: \(53240\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{3} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $\He_{11}:(C_5\times Q_8)$
Order: \(53240\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{3} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Automorphism Group: $\He_{11}:(C_5\times \GL(2,3))$, of order \(319440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11^{3} \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and solvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}:(C_5\times \GL(2,3))$, of order \(319440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$\He_{11}:(C_5\times Q_8)$
Normalizer:$\He_{11}:(C_5\times Q_8)$
Complements:$\He_{11}:(C_5\times Q_8)$
Minimal over-subgroups:$C_{11}$$C_{11}$$C_{11}$$C_{11}$$C_5$$C_2$

Other information

Möbius function$0$
Projective image$\He_{11}:(C_5\times Q_8)$