Properties

Label 53240.v.121.a1.a1
Order $ 2^{3} \cdot 5 \cdot 11 $
Index $ 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{44}.C_{10}$
Order: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Index: \(121\)\(\medspace = 11^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 8 & 6 & 8 & 10 \\ 10 & 8 & 2 & 8 \\ 9 & 3 & 5 & 5 \\ 5 & 9 & 1 & 5 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 3 & 4 & 8 & 0 \\ 10 & 10 & 7 & 0 \\ 2 & 1 & 7 & 8 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ 10 & 0 & 3 & 0 \\ 10 & 8 & 7 & 9 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 9 & 5 & 2 & 0 \\ 9 & 9 & 6 & 0 \\ 5 & 8 & 8 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 6 & 10 & 0 & 0 \\ 1 & 0 & 10 & 0 \\ 0 & 10 & 6 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $\He_{11}:(C_5\times Q_8)$
Order: \(53240\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{3} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}:(C_5\times \GL(2,3))$, of order \(319440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $S_4\times F_{11}$, of order \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_{22}:C_{10}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{44}.C_{10}$
Normal closure:$\He_{11}:(C_5\times Q_8)$
Core:$C_{11}$
Minimal over-subgroups:$\He_{11}:(C_5\times Q_8)$
Maximal under-subgroups:$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:C_{20}$$Q_8\times C_{11}$$C_5\times Q_8$

Other information

Number of subgroups in this conjugacy class$121$
Möbius function$-1$
Projective image$\He_{11}:(C_5\times Q_8)$