Properties

Label 5280.r.44.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,5)$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 9 & 0 & 10 & 0 \\ 6 & 9 & 5 & 10 \\ 5 & 0 & 2 & 0 \\ 1 & 5 & 5 & 2 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 1 & 6 \\ 5 & 1 & 6 & 1 \\ 6 & 8 & 0 & 0 \\ 7 & 6 & 6 & 3 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $0$

The subgroup is nonabelian and quasisimple (hence nonsolvable and perfect).

Ambient group ($G$) information

Description: $\SL(2,11):C_2^2$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,11).C_2\times S_4$
$\operatorname{Aut}(H)$ $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$A_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$Q_8$
Normalizer:$\SL(2,5):C_2^2$
Normal closure:$\SL(2,11)$
Core:$C_2$
Minimal over-subgroups:$\SL(2,11)$$\SL(2,5):C_2$
Maximal under-subgroups:$\SL(2,3)$$C_5:C_4$$C_3:C_4$

Other information

Number of subgroups in this autjugacy class$22$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-2$
Projective image$C_2^2\times \PSL(2,11)$