Properties

Label 5280.r.22.a1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,5):C_2$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 1 & 1 & 7 & 6 \\ 4 & 7 & 0 & 7 \\ 8 & 3 & 4 & 10 \\ 8 & 8 & 7 & 10 \end{array}\right), \left(\begin{array}{rrrr} 9 & 7 & 1 & 0 \\ 5 & 2 & 0 & 10 \\ 6 & 0 & 2 & 7 \\ 0 & 5 & 5 & 9 \end{array}\right), \left(\begin{array}{rrrr} 9 & 8 & 8 & 8 \\ 3 & 9 & 0 & 7 \\ 7 & 4 & 5 & 9 \\ 7 & 7 & 7 & 10 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $\SL(2,11):C_2^2$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,11).C_2\times S_4$
$\operatorname{Aut}(H)$ $C_2\times S_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$W$$C_2\times A_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$\SL(2,5):C_2^2$
Normal closure:$\SL(2,11):C_2^2$
Core:$C_4$
Minimal over-subgroups:$\SL(2,11):C_2$$\SL(2,5):C_2^2$
Maximal under-subgroups:$\SL(2,5)$$\SL(2,3):C_2$$C_4\times D_5$$C_4\times S_3$

Other information

Number of subgroups in this autjugacy class$66$
Number of conjugacy classes in this autjugacy class$6$
Möbius function$1$
Projective image$C_2^2\times \PSL(2,11)$