Subgroup ($H$) information
| Description: | $Q_8$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Index: | \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\left(\begin{array}{rrrr}
1 & 1 & 7 & 6 \\
4 & 7 & 0 & 7 \\
8 & 3 & 4 & 10 \\
8 & 8 & 7 & 10
\end{array}\right), \left(\begin{array}{rrrr}
1 & 3 & 5 & 0 \\
5 & 10 & 0 & 6 \\
1 & 0 & 10 & 3 \\
0 & 10 & 5 & 1
\end{array}\right), \left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 10 & 0 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 0 & 10
\end{array}\right)$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, nonabelian, a $p$-group (hence elementary and hyperelementary), metacyclic (hence metabelian), and rational.
Ambient group ($G$) information
| Description: | $\SL(2,11):C_2^2$ |
| Order: | \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \) |
| Exponent: | \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Description: | $\PSL(2,11)$ |
| Order: | \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Automorphism Group: | $\PGL(2,11)$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $-1$ |
| Derived length: | $0$ |
The quotient is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $\PSL(2,11).C_2\times S_4$ |
| $\operatorname{Aut}(H)$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
| Centralizer: | $\SL(2,11)$ | |||
| Normalizer: | $\SL(2,11):C_2^2$ | |||
| Minimal over-subgroups: | $Q_8\times C_{11}$ | $C_5\times Q_8$ | $C_3\times Q_8$ | $D_4:C_2$ |
| Maximal under-subgroups: | $C_4$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $660$ |
| Projective image | $C_2^2\times \PSL(2,11)$ |