Properties

Label 5280.r.2640.a1
Order $ 2 $
Index $ 2^{4} \cdot 3 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, the socle, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $\SL(2,11):C_2^2$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2^2\times \PSL(2,11)$
Order: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $S_3\times \PGL(2,11)$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $1$

The quotient is nonabelian, an A-group, and nonsolvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,11).C_2\times S_4$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$\SL(2,11):C_2^2$
Normalizer:$\SL(2,11):C_2^2$
Minimal over-subgroups:$C_{22}$$C_{10}$$C_6$$C_4$$C_2^2$$C_4$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1320$
Projective image$C_2^2\times \PSL(2,11)$