Properties

Label 5280.r.528.a1
Order $ 2 \cdot 5 $
Index $ 2^{4} \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 0 & 1 & 4 & 2 \\ 9 & 7 & 2 & 4 \\ 3 & 6 & 8 & 10 \\ 0 & 3 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\SL(2,11):C_2^2$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,11).C_2\times S_4$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_5\times Q_8$
Normalizer:$D_{20}:C_2$
Normal closure:$\SL(2,11)$
Core:$C_2$
Minimal over-subgroups:$C_{11}:C_{10}$$D_{10}$$C_{20}$$C_5:C_4$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of subgroups in this autjugacy class$66$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$4$
Projective image$C_2^2\times \PSL(2,11)$