Properties

Label 5280.r.12.a1
Order $ 2^{3} \cdot 5 \cdot 11 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{44}.C_{10}$
Order: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 1 & 1 & 7 & 6 \\ 4 & 7 & 0 & 7 \\ 8 & 3 & 4 & 10 \\ 8 & 8 & 7 & 10 \end{array}\right), \left(\begin{array}{rrrr} 7 & 1 & 6 & 10 \\ 0 & 5 & 7 & 8 \\ 6 & 8 & 3 & 4 \\ 9 & 4 & 9 & 7 \end{array}\right), \left(\begin{array}{rrrr} 1 & 7 & 9 & 5 \\ 5 & 2 & 0 & 10 \\ 1 & 8 & 5 & 9 \\ 3 & 5 & 2 & 3 \end{array}\right), \left(\begin{array}{rrrr} 1 & 3 & 5 & 0 \\ 5 & 10 & 0 & 6 \\ 1 & 0 & 10 & 3 \\ 0 & 10 & 5 & 1 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $\SL(2,11):C_2^2$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,11).C_2\times S_4$
$\operatorname{Aut}(H)$ $S_4\times F_{11}$, of order \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_{22}:C_{10}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{44}.C_{10}$
Normal closure:$\SL(2,11):C_2^2$
Core:$Q_8$
Minimal over-subgroups:$\SL(2,11):C_2^2$
Maximal under-subgroups:$C_{11}:C_{20}$$Q_8\times C_{11}$$C_5\times Q_8$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2^2\times \PSL(2,11)$