Subgroup ($H$) information
| Description: | $C_9$ | 
| Order: | \(9\)\(\medspace = 3^{2} \) | 
| Index: | \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \) | 
| Exponent: | \(9\)\(\medspace = 3^{2} \) | 
| Generators: | $\langle(1,9,4)(2,5,8)(3,7,6)(10,11,18)(12,15,17)(13,14,16), (1,5,3,9,8,7,4,2,6)(10,16,17,11,13,12,18,14,15)\rangle$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
| Description: | $\SOPlus(4,8)$ | 
| Order: | \(508032\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7^{2} \) | 
| Exponent: | \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \) | 
| Derived length: | $1$ | 
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $\SL(2,8)^2:C_6$, of order \(1524096\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 7^{2} \) | 
| $\operatorname{Aut}(H)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
| Centralizer: | $C_9\times D_9$ | |||
| Normalizer: | $D_9^2$ | |||
| Normal closure: | $\SL(2,8)^2$ | |||
| Core: | $C_1$ | |||
| Minimal over-subgroups: | $C_3\times C_9$ | $C_{18}$ | $D_9$ | $D_9$ | 
| Maximal under-subgroups: | $C_3$ | 
Other information
| Number of subgroups in this conjugacy class | $1568$ | 
| Möbius function | $0$ | 
| Projective image | $\SOPlus(4,8)$ | 
