Properties

Label 508032.a.56448.d1.a1
Order $ 3^{2} $
Index $ 2^{7} \cdot 3^{2} \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $\langle(1,9,4)(2,5,8)(3,7,6)(10,11,18)(12,15,17)(13,14,16), (1,5,3,9,8,7,4,2,6)(10,16,17,11,13,12,18,14,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $\SOPlus(4,8)$
Order: \(508032\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7^{2} \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8)^2:C_6$, of order \(1524096\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_9\times D_9$
Normalizer:$D_9^2$
Normal closure:$\SL(2,8)^2$
Core:$C_1$
Minimal over-subgroups:$C_3\times C_9$$C_{18}$$D_9$$D_9$
Maximal under-subgroups:$C_3$

Other information

Number of subgroups in this conjugacy class$1568$
Möbius function$0$
Projective image$\SOPlus(4,8)$