Properties

Label 508032.a.3136.b1.a1
Order $ 2 \cdot 3^{4} $
Index $ 2^{6} \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9\times D_9$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(3136\)\(\medspace = 2^{6} \cdot 7^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(1,7,5,4,3,2,9,6,8)(10,13,15,11,14,17,18,16,12), (10,18,11)(12,17,15)(13,16,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $\SOPlus(4,8)$
Order: \(508032\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7^{2} \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8)^2:C_6$, of order \(1524096\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $C_9:C_6^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$W$$D_{18}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_9$
Normalizer:$D_9^2$
Normal closure:$\SOPlus(4,8)$
Core:$C_1$
Minimal over-subgroups:$D_9^2$
Maximal under-subgroups:$C_9^2$$S_3\times C_9$$C_3\times D_9$

Other information

Number of subgroups in this conjugacy class$1568$
Möbius function$0$
Projective image$\SOPlus(4,8)$