Properties

Label 508032.a.18816.b1.a1
Order $ 3^{3} $
Index $ 2^{7} \cdot 3 \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_9$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(18816\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{2} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $\langle(1,5,3,9,8,7,4,2,6)(10,14,12,11,16,15,18,13,17), (10,18,11)(12,17,15)(13,16,14), (1,4,9)(2,8,5)(3,6,7)(10,11,18)(12,15,17)(13,14,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $\SOPlus(4,8)$
Order: \(508032\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7^{2} \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8)^2:C_6$, of order \(1524096\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_9^2$
Normalizer:$D_9^2$
Normal closure:$\SL(2,8)^2$
Core:$C_1$
Minimal over-subgroups:$C_9^2$$S_3\times C_9$$C_3\times D_9$$C_3:D_9$
Maximal under-subgroups:$C_3^2$$C_9$$C_9$

Other information

Number of subgroups in this conjugacy class$1568$
Möbius function$0$
Projective image$\SOPlus(4,8)$