Properties

Label 508032.a.28224.j1.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{6} \cdot 3^{2} \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_9$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(28224\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(1,9,4)(2,5,8)(3,7,6)(10,11,18)(12,15,17)(13,14,16), (2,3)(4,9)(5,6)(7,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $\SOPlus(4,8)$
Order: \(508032\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7^{2} \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8)^2:C_6$, of order \(1524096\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $C_9:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$W$$D_9$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{18}$
Normal closure:$\SL(2,8)^2$
Core:$C_1$
Minimal over-subgroups:$\SL(2,8)$$C_3:D_9$$D_{18}$
Maximal under-subgroups:$C_9$$S_3$

Other information

Number of subgroups in this conjugacy class$14112$
Möbius function$-1$
Projective image$\SOPlus(4,8)$