Subgroup ($H$) information
| Description: | $D_9$ |
| Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Index: | \(28224\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Generators: |
$\langle(1,9,4)(2,5,8)(3,7,6)(10,11,18)(12,15,17)(13,14,16), (2,3)(4,9)(5,6)(7,8) \!\cdots\! \rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $\SOPlus(4,8)$ |
| Order: | \(508032\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7^{2} \) |
| Exponent: | \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \) |
| Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $\SL(2,8)^2:C_6$, of order \(1524096\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 7^{2} \) |
| $\operatorname{Aut}(H)$ | $C_9:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| $W$ | $D_9$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Related subgroups
| Centralizer: | $C_2$ | ||
| Normalizer: | $D_{18}$ | ||
| Normal closure: | $\SL(2,8)^2$ | ||
| Core: | $C_1$ | ||
| Minimal over-subgroups: | $\SL(2,8)$ | $C_3:D_9$ | $D_{18}$ |
| Maximal under-subgroups: | $C_9$ | $S_3$ |
Other information
| Number of subgroups in this conjugacy class | $14112$ |
| Möbius function | $-1$ |
| Projective image | $\SOPlus(4,8)$ |