Subgroup ($H$) information
| Description: | $D_6$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$a, b, d^{20}$
|
| Derived length: | $2$ |
The subgroup is normal, a direct factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Ambient group ($G$) information
| Description: | $C_2\times D_6\times F_5$ |
| Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_2\times F_5$ |
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Automorphism Group: | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4:S_3^2\times F_5$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $\operatorname{res}(S)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $6$ |
| Möbius function | $0$ |
| Projective image | $D_6\times F_5$ |