Properties

Label 480.1197.12.h1
Order $ 2^{3} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times F_5$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ac, c^{2}, d^{6}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_2\times D_6\times F_5$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:S_3^2\times F_5$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(S)$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^3\times F_5$
Normal closure:$S_3\times F_5$
Core:$F_5$
Minimal over-subgroups:$S_3\times F_5$$C_2^2\times F_5$
Maximal under-subgroups:$F_5$$D_{10}$$F_5$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$48$
Number of conjugacy classes in this autjugacy class$16$
Möbius function$-2$
Projective image$C_2\times D_6\times F_5$