Subgroup ($H$) information
Description: | $C_2^2\times F_5$ |
Order: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Generators: |
$a, d^{15}, c^{2}, bc, d^{6}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), a direct factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_2\times D_6\times F_5$ |
Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $S_3$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^4:S_3^2\times F_5$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $3$ |
Projective image | $S_3\times F_5$ |