Subgroup ($H$) information
| Description: | $C_3^3:A_4\times A_6$ |
| Order: | \(116640\)\(\medspace = 2^{5} \cdot 3^{6} \cdot 5 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Generators: |
$\langle(7,8)(14,15), (13,14,15), (7,11,14)(8,10,13)(9,12,15), (1,2)(3,6)(7,9,8) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, and nonsolvable.
Ambient group ($G$) information
| Description: | $(S_3^3\times A_6):S_3$ |
| Order: | \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \) |
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3:C_2^2.D_6.A_6.C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_3^3:C_2^2.D_6.A_6.C_2^2$ |
| $W$ | $(S_3^3\times A_6):S_3$, of order \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $(S_3^3\times A_6):S_3$ |