Properties

Label 466560.w.2.B
Order $ 2^{6} \cdot 3^{6} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3^3\times A_6):S_4$
Order: \(233280\)\(\medspace = 2^{6} \cdot 3^{6} \cdot 5 \)
Index: \(2\)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $\langle(7,8)(14,15), (13,14,15), (7,11,14)(8,10,13)(9,12,15), (3,6)(8,9)(10,13,12,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $(S_3^3\times A_6):S_3$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_3^3:C_2^2.D_6.A_6.C_2^2$
$W$$(S_3^3\times A_6):S_3$, of order \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$(S_3^3\times A_6):S_3$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$(S_3^3\times A_6):S_3$
Maximal under-subgroups:$C_3^3:A_4\times A_6$$(C_3^3\times A_6):D_4$$C_3\wr C_3:S_6$$(C_3^3\times A_5):S_4$$C_3^4:C_{12}:S_4$$C_3^3:S_4^2$$A_4:S_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$(S_3^3\times A_6):S_3$