Subgroup ($H$) information
| Description: | $(C_3^3\times A_6):S_4$ | 
| Order: | \(233280\)\(\medspace = 2^{6} \cdot 3^{6} \cdot 5 \) | 
| Index: | \(2\) | 
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) | 
| Generators: | 
		
    $\langle(7,8)(14,15), (13,14,15), (7,11,14)(8,10,13)(9,12,15), (3,6)(8,9)(10,13,12,14) \!\cdots\! \rangle$
    
    
    
         | 
| Derived length: | $4$ | 
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and nonsolvable.
Ambient group ($G$) information
| Description: | $(S_3^3\times A_6):S_3$ | 
| Order: | \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \) | 
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Description: | $C_2$ | 
| Order: | \(2\) | 
| Exponent: | \(2\) | 
| Automorphism Group: | $C_1$, of order $1$ | 
| Outer Automorphisms: | $C_1$, of order $1$ | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3:C_2^2.D_6.A_6.C_2^2$ | 
| $\operatorname{Aut}(H)$ | $C_3^3:C_2^2.D_6.A_6.C_2^2$ | 
| $W$ | $(S_3^3\times A_6):S_3$, of order \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \) | 
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | not computed | 
| Projective image | $(S_3^3\times A_6):S_3$ |