Properties

Label 466560.w.108.V
Order $ 2^{5} \cdot 3^{3} \cdot 5 $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4\times A_6$
Order: \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,2)(3,6), (1,2,5,6)(3,4)(7,12,13)(8,10,14)(9,11,15), (11,12)(13,15), (7,9)(13,15), (7,11,15)(8,10,14)(9,12,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $(S_3^3\times A_6):S_3$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $S_4\times S_6:C_2$, of order \(34560\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5 \)
$W$$A_4:S_6$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times A_4:S_6$
Normal closure:$C_3^3:A_4\times A_6$
Core:$A_6$
Minimal over-subgroups:$C_3^3:A_4\times A_6$$C_2\times A_4\times A_6$$A_4:S_6$$A_4:S_6$
Maximal under-subgroups:$C_2^2\times A_6$$C_3\times A_6$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$(S_3^3\times A_6):S_3$