Properties

Label 466560.w.27.A
Order $ 2^{7} \cdot 3^{3} \cdot 5 $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times A_4:S_6$
Order: \(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,2,3,4,5)(7,12,13)(8,11,14)(9,10,15), (13,15), (10,12)(13,15), (3,6)(7,9)(10,15,12,13)(11,14), (7,9)(13,15), (7,12,15)(8,11,14)(9,10,13)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $(S_3^3\times A_6):S_3$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_2\times S_4.A_6.C_2^2$
$W$$A_4:S_6$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times A_4:S_6$
Normal closure:$(S_3^3\times A_6):S_3$
Core:$A_6$
Minimal over-subgroups:$(S_3^3\times A_6):S_3$
Maximal under-subgroups:$C_2\times A_4\times A_6$$A_4:S_6$$A_4:S_6$$C_2^3:S_6$$C_6:S_6$$C_2\times A_4:S_5$$C_2\times C_6^2:D_{12}$$C_2\times S_4^2$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$(S_3^3\times A_6):S_3$