Properties

Label 466560.w.12.A
Order $ 2^{5} \cdot 3^{5} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:S_3^2\times A_6$
Order: \(38880\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(7,8)(14,15), (13,14,15), (1,2)(3,6)(7,9,8)(10,12,11)(13,14,15), (1,2,5,6)(3,4)(7,9)(10,11,12)(13,14), (7,8,9)(13,14,15), (10,12)(13,15), (10,12,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $(S_3^3\times A_6):S_3$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_3^3:C_2^2.D_6.A_6.C_2^2$
$W$$(S_3^3\times A_6):S_3$, of order \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$(S_3^3\times A_6):S_3$
Complements:$D_6$ $D_6$ $D_6$ $D_6$
Minimal over-subgroups:$C_3^3:A_4\times A_6$$S_3^3\times A_6$$(C_3^3\times A_6):D_4$$(C_3^2\times A_6):D_{12}$
Maximal under-subgroups:$C_3^2:C_6\times A_6$$S_3^2\times A_6$$\GL(2,4):S_3^2$$C_3^3:(C_4\times S_3^2)$$S_4\times C_3:S_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$(S_3^3\times A_6):S_3$