Properties

Label 466560.w.38880.A
Order $ 2^{2} \cdot 3 $
Index $ 2^{5} \cdot 3^{5} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(38880\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,5)(7,10)(8,12)(9,11), (1,5)(2,4)(3,6)(7,8)(10,15)(11,13)(12,14), (7,10,14)(8,12,15)(9,11,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Ambient group ($G$) information

Description: $(S_3^3\times A_6):S_3$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure:$(S_3^3\times A_6):S_3$
Core:$C_1$
Minimal over-subgroups:$C_2\times S_4$
Maximal under-subgroups:$S_3$$S_3$$C_2^2$

Other information

Number of subgroups in this autjugacy class$9720$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$(S_3^3\times A_6):S_3$