Properties

Label 45349632.b.3.A
Order $ 2^{8} \cdot 3^{10} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^9.C_2^6.D_6$
Order: \(15116544\)\(\medspace = 2^{8} \cdot 3^{10} \)
Index: \(3\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(10,12,11)(16,17,18), (4,6,5)(10,12,11)(16,17,18)(25,27,26), (25,26,27) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^9.C_2^6.S_3^2$
Order: \(45349632\)\(\medspace = 2^{8} \cdot 3^{11} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.D_6\wr S_3.D_6$, of order \(90699264\)\(\medspace = 2^{9} \cdot 3^{11} \)
$\operatorname{Aut}(H)$ $(C_3:S_3)^3.D_6\wr S_3$, of order \(60466176\)\(\medspace = 2^{10} \cdot 3^{10} \)
$W$$C_3^9.C_2^6.D_6$, of order \(15116544\)\(\medspace = 2^{8} \cdot 3^{10} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^9.C_2^6.D_6$
Normal closure:$C_3^9.C_2^6.S_3^2$
Core:$C_3^9.C_2^6.S_3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^9.C_2^6.S_3^2$