Properties

Label 15116544.de
Order \( 2^{8} \cdot 3^{10} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{10} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $27$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,3,7)(2,5,10)(4,9,14,12,18,6)(8,13,15)(11,16,17)(19,20,22,25,27,21,23,24,26), (1,2,4,8,12,17)(3,6,11,15,18,14,13,16,9,7,5,10)(20,21)(22,24)(23,25)(26,27) >;
 
Copy content gap:G := Group( (1,3,7)(2,5,10)(4,9,14,12,18,6)(8,13,15)(11,16,17)(19,20,22,25,27,21,23,24,26), (1,2,4,8,12,17)(3,6,11,15,18,14,13,16,9,7,5,10)(20,21)(22,24)(23,25)(26,27) );
 
Copy content sage:G = PermutationGroup(['(1,3,7)(2,5,10)(4,9,14,12,18,6)(8,13,15)(11,16,17)(19,20,22,25,27,21,23,24,26)', '(1,2,4,8,12,17)(3,6,11,15,18,14,13,16,9,7,5,10)(20,21)(22,24)(23,25)(26,27)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(134676798591457609471309433828963774506566516030942164791768786456502635763874649698987286550151129125195224584364920475419793296453570371523512820243735353229536654619911208133035418809216471983984345890023875667721799233026186402845104404129482284069267156060727384689902863053530233162440257336604489937116017892223641814657075475900353189715080675557019608500621095610486467159545499776613248103418833890469396724119233296943684123031707036018019304866043693884256486162625797690871171869777925171093259738317042135260673157366439443900881720165681887610648473733035885464858444240568320734946468274374532085958743276222122223243924831,15116544)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18;
 

Group information

Description:$C_3^9.C_2^6.D_6$
Order: \(15116544\)\(\medspace = 2^{8} \cdot 3^{10} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$(C_3:S_3)^3.D_6\wr S_3$, of order \(60466176\)\(\medspace = 2^{10} \cdot 3^{10} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $C_3$ x 10
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 48303 112994 524880 2731374 2426112 7033392 2239488 15116544
Conjugacy classes   1 14 87 13 307 17 114 8 561
Divisions 1 14 82 13 290 17 77 8 502
Autjugacy classes 1 14 78 13 287 7 73 3 476

Minimal presentations

Permutation degree:$27$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid c^{2}=d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([18, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 144773568, 489474073, 91, 773136362, 51230, 223779, 174117, 92055, 1210734004, 54808402, 311180170, 958, 256, 10373, 186647, 7817, 923, 2231718, 24527688, 14764722, 7620, 3858, 366, 497671, 3481, 124459, 6973, 3535, 2177248904, 130018634, 548624060, 29240, 476, 103689, 51867, 4365, 26001, 2666385226, 127819324, 675287758, 213922, 38134, 586, 4976651, 13499165, 20160623, 186707, 36407, 2777291724, 185951406, 818838120, 252840, 42276, 696, 705438733, 23514655, 70543921, 217849, 36445, 1813985294, 151165472, 906992690, 4199126, 116798, 19634, 3470, 967458849, 282175539, 10599, 209392144, 1031362018, 304570420, 9517948, 1586464, 33280, 443418641, 1997623331, 237945653, 23934653, 3989249, 735029, 105209]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.16, G.17, G.18]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(134676798591457609471309433828963774506566516030942164791768786456502635763874649698987286550151129125195224584364920475419793296453570371523512820243735353229536654619911208133035418809216471983984345890023875667721799233026186402845104404129482284069267156060727384689902863053530233162440257336604489937116017892223641814657075475900353189715080675557019608500621095610486467159545499776613248103418833890469396724119233296943684123031707036018019304866043693884256486162625797690871171869777925171093259738317042135260673157366439443900881720165681887610648473733035885464858444240568320734946468274374532085958743276222122223243924831,15116544); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.16; k := G.17; l := G.18;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(134676798591457609471309433828963774506566516030942164791768786456502635763874649698987286550151129125195224584364920475419793296453570371523512820243735353229536654619911208133035418809216471983984345890023875667721799233026186402845104404129482284069267156060727384689902863053530233162440257336604489937116017892223641814657075475900353189715080675557019608500621095610486467159545499776613248103418833890469396724119233296943684123031707036018019304866043693884256486162625797690871171869777925171093259738317042135260673157366439443900881720165681887610648473733035885464858444240568320734946468274374532085958743276222122223243924831,15116544)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(134676798591457609471309433828963774506566516030942164791768786456502635763874649698987286550151129125195224584364920475419793296453570371523512820243735353229536654619911208133035418809216471983984345890023875667721799233026186402845104404129482284069267156060727384689902863053530233162440257336604489937116017892223641814657075475900353189715080675557019608500621095610486467159545499776613248103418833890469396724119233296943684123031707036018019304866043693884256486162625797690871171869777925171093259738317042135260673157366439443900881720165681887610648473733035885464858444240568320734946468274374532085958743276222122223243924831,15116544)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18;
 
Permutation group:Degree $27$ $\langle(1,3,7)(2,5,10)(4,9,14,12,18,6)(8,13,15)(11,16,17)(19,20,22,25,27,21,23,24,26) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,3,7)(2,5,10)(4,9,14,12,18,6)(8,13,15)(11,16,17)(19,20,22,25,27,21,23,24,26), (1,2,4,8,12,17)(3,6,11,15,18,14,13,16,9,7,5,10)(20,21)(22,24)(23,25)(26,27) >;
 
Copy content gap:G := Group( (1,3,7)(2,5,10)(4,9,14,12,18,6)(8,13,15)(11,16,17)(19,20,22,25,27,21,23,24,26), (1,2,4,8,12,17)(3,6,11,15,18,14,13,16,9,7,5,10)(20,21)(22,24)(23,25)(26,27) );
 
Copy content sage:G = PermutationGroup(['(1,3,7)(2,5,10)(4,9,14,12,18,6)(8,13,15)(11,16,17)(19,20,22,25,27,21,23,24,26)', '(1,2,4,8,12,17)(3,6,11,15,18,14,13,16,9,7,5,10)(20,21)(22,24)(23,25)(26,27)'])
 
Transitive group: 36T63866 36T63868 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^9.C_2^5)$ . $S_4$ (3) $C_3^9$ . $(C_2^5:S_4)$ $(C_3^9.C_2^6)$ . $D_6$ $C_3^6$ . $(C_6:D_6^2:S_4)$ all 19

Elements of the group are displayed as permutations of degree 27.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 26 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^9.C_2^6.D_6$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^9.C_2^6.C_3$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_3^9.C_2^6.D_6$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^9$ $G/\operatorname{Fit} \simeq$ $C_2^5:S_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^9.C_2^6.D_6$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^9$ $G/\operatorname{soc} \simeq$ $C_2^5:S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5:D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^9.C_3$

Subgroup diagram and profile

Series

Derived series $C_3^9.C_2^6.D_6$ $\rhd$ $C_3^9.C_2^6.C_3$ $\rhd$ $C_3^9.C_2^6$ $\rhd$ $C_3^9$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^9.C_2^6.D_6$ $\rhd$ $C_3^9.C_2^6.C_6$ $\rhd$ $C_3^9.C_2^6.C_3$ $\rhd$ $C_3^9.C_2^6$ $\rhd$ $C_3^9.C_2^4$ $\rhd$ $C_3^9.C_2^2$ $\rhd$ $C_3^9$ $\rhd$ $C_3^3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^9.C_2^6.D_6$ $\rhd$ $C_3^9.C_2^6.C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $561 \times 561$ character table is not available for this group.

Rational character table

The $502 \times 502$ rational character table is not available for this group.