Properties

Label 4199040.a.87480.h1
Order $ 2^{4} \cdot 3 $
Index $ 2^{3} \cdot 3^{7} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,3):C_2$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(87480\)\(\medspace = 2^{3} \cdot 3^{7} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,71)(2,70)(3,72)(4,68)(5,67)(6,69)(7,65)(8,64)(9,66)(10,62)(11,61)(12,63) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $C_3^4:\Sp(4,3)$
Order: \(4199040\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 5 \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$D_4.S_4$
Normal closure:$C_3^4:\Sp(4,3)$
Core:$C_1$
Minimal over-subgroups:$C_3^4:\SL(2,3):C_2$$\Unitary(2,3)$$C_4.S_4$$D_4.A_4$
Maximal under-subgroups:$\SL(2,3)$$D_4:C_2$$C_{12}$

Other information

Number of subgroups in this autjugacy class$21870$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:\Sp(4,3)$