Properties

Label 4199040.a.21870.d1
Order $ 2^{6} \cdot 3 $
Index $ 2 \cdot 3^{7} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4.S_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(21870\)\(\medspace = 2 \cdot 3^{7} \cdot 5 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(1,26)(2,13)(4,48)(5,44)(6,31)(7,76)(8,66)(9,62)(10,61)(11,78)(12,65)(14,25) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $C_3^4:\Sp(4,3)$
Order: \(4199040\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 5 \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
$\operatorname{Aut}(H)$ $\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$W$$\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4.S_4$
Normal closure:$C_3^4:\Sp(4,3)$
Core:$C_1$
Minimal over-subgroups:$C_3^3:S_3.\GL(2,\mathbb{Z}/4)$$C_2.C_2^4:A_5$
Maximal under-subgroups:$\Unitary(2,3)$$C_4.S_4$$D_4.A_4$$D_4.D_4$$C_3:\SD_{16}$

Other information

Number of subgroups in this autjugacy class$21870$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:\Sp(4,3)$