Properties

Label 4199040.a.58320.x1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{4} \cdot 3^{6} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times \SL(2,3)$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(58320\)\(\medspace = 2^{4} \cdot 3^{6} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,13,71,59)(2,60,75,26)(3,50,58,38)(4,30,42,16)(5,20,52,28)(6,64,29,76) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $C_3^4:\Sp(4,3)$
Order: \(4199040\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 5 \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_3^2\times \SL(2,3)$
Normal closure:$C_3^4:\Sp(4,3)$
Core:$C_1$
Minimal over-subgroups:$C_3^3:\SL(2,3)$$C_3^2\times \SL(2,3)$
Maximal under-subgroups:$\SL(2,3)$$C_3\times Q_8$$\SL(2,3)$$\SL(2,3)$$C_3\times C_6$

Other information

Number of subgroups in this autjugacy class$19440$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:\Sp(4,3)$