Subgroup ($H$) information
Description: | $C_3^2\times \SL(2,3)$ |
Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Index: | \(19440\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 5 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(1,26,67)(2,79,13)(3,54,40)(4,20,70)(5,73,16)(6,48,43)(7,23,64)(8,76,10) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is nonabelian and solvable.
Ambient group ($G$) information
Description: | $C_3^4:\Sp(4,3)$ |
Order: | \(4199040\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 5 \) |
Exponent: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
Derived length: | $0$ |
The ambient group is nonabelian and perfect (hence nonsolvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $S_4\times C_3^2:\GL(2,3)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
$W$ | $C_3\times A_4$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $6480$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_3^4:\Sp(4,3)$ |