Properties

Label 4199040.a.419904.a1
Order $ 2 \cdot 5 $
Index $ 2^{6} \cdot 3^{8} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(419904\)\(\medspace = 2^{6} \cdot 3^{8} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(1,6)(2,5)(3,4)(7,9)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,27)(17,26) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_3^4:\Sp(4,3)$
Order: \(4199040\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 5 \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_5:C_8$
Normal closure:$C_3^4:\Sp(4,3)$
Core:$C_1$
Minimal over-subgroups:$C_3^4:C_{10}$$C_2.C_2^4:C_5$$C_5:C_4$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of subgroups in this autjugacy class$104976$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:\Sp(4,3)$