Subgroup ($H$) information
Description: | $C_3\times C_9$ |
Order: | \(27\)\(\medspace = 3^{3} \) |
Index: | \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \) |
Exponent: | \(9\)\(\medspace = 3^{2} \) |
Generators: |
$\langle(1,25,13)(2,81,40)(3,53,67)(4,19,16)(5,75,43)(6,47,70)(7,22,10)(8,78,37) \!\cdots\! \rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_3^4:\Sp(4,3)$ |
Order: | \(4199040\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 5 \) |
Exponent: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
Derived length: | $0$ |
The ambient group is nonabelian and perfect (hence nonsolvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
$W$ | $C_3^2$, of order \(9\)\(\medspace = 3^{2} \) |
Related subgroups
Centralizer: | $C_3\times C_9$ | ||
Normalizer: | $C_3^4.C_3$ | ||
Normal closure: | $C_3^4:\Sp(4,3)$ | ||
Core: | $C_1$ | ||
Minimal over-subgroups: | $C_9:C_3^2$ | $C_3^2:C_9$ | $C_3^2:C_9$ |
Maximal under-subgroups: | $C_3^2$ | $C_9$ |
Other information
Number of subgroups in this autjugacy class | $17280$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_3^4:\Sp(4,3)$ |