Properties

Label 4116.ba.98.a1.b1
Order $ 2 \cdot 3 \cdot 7 $
Index $ 2 \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{42}$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Index: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $ab^{3}c^{4}d^{3}, cd, b^{14}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{21}.D_7^2$
Order: \(4116\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7:(C_6^2:C_2^2)$, of order \(49392\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{42}$
Normalizer:$C_3\times D_{14}$
Normal closure:$C_7^2:C_{42}$
Core:$C_3$
Minimal over-subgroups:$D_7\times C_{21}$$C_3\times D_{14}$
Maximal under-subgroups:$C_{21}$$C_{14}$$C_6$
Autjugate subgroups:4116.ba.98.a1.a1

Other information

Number of subgroups in this conjugacy class$49$
Möbius function$0$
Projective image$C_7^2:D_{14}$