Properties

Label 4116.ba.1372.a1.a1
Order $ 3 $
Index $ 2^{2} \cdot 7^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \)
Exponent: \(3\)
Generators: $b^{14}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{21}.D_7^2$
Order: \(4116\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_7^2:D_{14}$
Order: \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $\He_7:C_6\wr C_2$, of order \(24696\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{3} \)
Outer Automorphisms: $C_3\times S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7:(C_6^2:C_2^2)$, of order \(49392\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(24696\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{21}.D_7^2$
Normalizer:$C_{21}.D_7^2$
Complements:$C_7^2:D_{14}$
Minimal over-subgroups:$C_{21}$$C_{21}$$C_{21}$$C_{21}$$C_{21}$$C_{21}$$C_6$$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_7^2:D_{14}$