Properties

Label 4116.ba.686.a1.b1
Order $ 2 \cdot 3 $
Index $ 2 \cdot 7^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(686\)\(\medspace = 2 \cdot 7^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ab^{3}c^{4}d^{3}, b^{14}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{21}.D_7^2$
Order: \(4116\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7:(C_6^2:C_2^2)$, of order \(49392\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times D_{14}$
Normalizer:$C_3\times D_{14}$
Normal closure:$C_{21}:D_7$
Core:$C_3$
Minimal over-subgroups:$C_{42}$$C_3\times D_7$$C_3\times D_7$$C_2\times C_6$
Maximal under-subgroups:$C_3$$C_2$
Autjugate subgroups:4116.ba.686.a1.a1

Other information

Number of subgroups in this conjugacy class$49$
Möbius function$0$
Projective image$C_7^2:D_{14}$