Subgroup ($H$) information
| Description: | $C_2^2\times C_{28}$ |
| Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Generators: |
$c^{21}, e, c^{12}, d, c^{42}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, abelian (hence metabelian and an A-group), and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
| Description: | $C_{28}:(C_6\times S_4)$ |
| Order: | \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_6\times S_3$ |
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{14}\times A_4).C_6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_6\times C_2^3:S_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
| $W$ | $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
| Möbius function | $6$ |
| Projective image | $C_2\times S_4\times F_7$ |