Properties

Label 4032.fk.112.g1.c1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{4} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times S_3$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ac^{49}e, b^{3}, b^{2}, c^{28}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{28}:(C_6\times S_4)$
Order: \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{14}\times A_4).C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_6\times D_6$
Normal closure:$C_2\times S_4\times F_7$
Core:$C_1$
Minimal over-subgroups:$S_3\times F_7$$C_6\times S_4$$C_6\times D_6$
Maximal under-subgroups:$C_3\times S_3$$C_3\times C_6$$C_3\times S_3$$C_2\times C_6$$D_6$
Autjugate subgroups:4032.fk.112.g1.a14032.fk.112.g1.b14032.fk.112.g1.d1

Other information

Number of subgroups in this conjugacy class$56$
Möbius function$0$
Projective image$C_{28}:(C_6\times S_4)$