Properties

Label 4032.fk.72.h1.a1
Order $ 2^{3} \cdot 7 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{28}$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $c^{21}e, c^{12}, c^{42}, d$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{28}:(C_6\times S_4)$
Order: \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{14}\times A_4).C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_6\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(224\)\(\medspace = 2^{5} \cdot 7 \)
$W$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{28}$
Normalizer:$C_{28}:(C_6\times D_4)$
Normal closure:$C_2^2\times C_{28}$
Core:$C_{14}$
Minimal over-subgroups:$C_{14}:C_{12}$$C_2^2\times C_{28}$$C_2^2:C_{28}$$C_2^2:C_{28}$$C_2\times D_{28}$$C_2\times D_{28}$$D_{14}:C_4$$C_{14}.D_4$
Maximal under-subgroups:$C_2\times C_{14}$$C_{28}$$C_2\times C_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_2\times S_4\times F_7$