Properties

Label 32928.bb.4.b1.a1
Order $ 2^{3} \cdot 3 \cdot 7^{3} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^3:S_4$
Order: \(8232\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a, e^{2}, cd^{3}e^{10}f^{6}, d^{7}e^{10}, bd^{2}e^{10}f^{10}, f^{2}, d^{2}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_7\times C_{14}^2):S_4$
Order: \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_2^4.C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_7^3:(C_6\times S_4)$, of order \(49392\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7^{3} \)
$W$$C_7^3:S_4$, of order \(8232\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_7^3:S_4$
Normal closure:$(C_7\times C_{14}^2):S_4$
Core:$C_7:D_7^2$
Minimal over-subgroups:$(C_7\times C_{14}^2):S_4$
Maximal under-subgroups:$C_7^3:A_4$$C_7^3:D_4$$C_7\wr S_3$$S_4$
Autjugate subgroups:32928.bb.4.b1.b1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-1$
Projective image$(C_7\times C_{14}^2):S_4$