Subgroup ($H$) information
Description: | $C_7:D_7^2$ |
Order: | \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \) |
Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$cd^{13}f^{6}, d^{2}, e^{2}, d^{7}e^{4}f^{8}, f^{2}$
|
Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $(C_7\times C_{14}^2):S_4$ |
Order: | \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $S_4$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^3.C_2^4.C_6^2.C_2$ |
$\operatorname{Aut}(H)$ | $F_7\wr S_3$, of order \(444528\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7^{3} \) |
$W$ | $C_7^3:S_4$, of order \(8232\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{3} \) |
Related subgroups
Other information
Möbius function | $-12$ |
Projective image | $(C_7\times C_{14}^2):S_4$ |