Properties

Label 32928.bb.24.b1.a1
Order $ 2^{2} \cdot 7^{3} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:D_7^2$
Order: \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $cd^{13}f^{6}, d^{2}, e^{2}, d^{7}e^{4}f^{8}, f^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_7\times C_{14}^2):S_4$
Order: \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_2^4.C_6^2.C_2$
$\operatorname{Aut}(H)$ $F_7\wr S_3$, of order \(444528\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7^{3} \)
$W$$C_7^3:S_4$, of order \(8232\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_7\times C_{14}^2):S_4$
Complements:$S_4$ $S_4$
Minimal over-subgroups:$C_7^3:A_4$$C_2\times C_7^3:C_2^2$$C_7^3:D_4$
Maximal under-subgroups:$C_7^2:C_{14}$$D_7^2$
Autjugate subgroups:32928.bb.24.b1.b1

Other information

Möbius function$-12$
Projective image$(C_7\times C_{14}^2):S_4$