Properties

Label 32928.bb.1372.b1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2^{2} \cdot 7^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ae^{10}f^{8}, bcd^{10}e^{12}f^{8}, cd^{3}e^{10}f^{6}, d^{7}e^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $(C_7\times C_{14}^2):S_4$
Order: \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_2^4.C_6^2.C_2$
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_4$
Normal closure:$(C_7\times C_{14}^2):S_4$
Core:$C_1$
Minimal over-subgroups:$C_7^3:S_4$$C_2^2:S_4$
Maximal under-subgroups:$A_4$$D_4$$S_3$
Autjugate subgroups:32928.bb.1372.b1.b1

Other information

Number of subgroups in this conjugacy class$1372$
Möbius function$1$
Projective image$(C_7\times C_{14}^2):S_4$