Properties

Label 32928.bb.4116.j1.a1
Order $ 2^{3} $
Index $ 2^{2} \cdot 3 \cdot 7^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(4116\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $af^{2}, d^{7}f^{8}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $(C_7\times C_{14}^2):S_4$
Order: \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_2^4.C_6^2.C_2$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times D_4$
Normal closure:$(C_7\times C_{14}^2):S_4$
Core:$C_1$
Minimal over-subgroups:$D_7\wr C_2$$C_7:D_4$$S_4$$C_2\times D_4$
Maximal under-subgroups:$C_2^2$$C_4$$C_2^2$
Autjugate subgroups:32928.bb.4116.j1.b1

Other information

Number of subgroups in this conjugacy class$2058$
Möbius function$-2$
Projective image$(C_7\times C_{14}^2):S_4$