Properties

Label 32928.bb.84.x1.a1
Order $ 2^{3} \cdot 7^{2} $
Index $ 2^{2} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_7\wr C_2$
Order: \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)
Index: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $af^{2}, cd^{11}f^{6}, d^{2}e^{8}, d^{7}e^{4}f^{8}, e^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_7\times C_{14}^2):S_4$
Order: \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_2^4.C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_7^2:(C_3\times D_8)$, of order \(2352\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{2} \)
$W$$D_7\wr C_2$, of order \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_7^2:C_2^2$
Normal closure:$(C_7\times C_{14}^2):S_4$
Core:$C_1$
Minimal over-subgroups:$C_7^3:D_4$$D_7^2:C_2^2$
Maximal under-subgroups:$D_7^2$$C_7^2:C_4$$D_7^2$$D_4$
Autjugate subgroups:32928.bb.84.x1.b1

Other information

Number of subgroups in this conjugacy class$42$
Möbius function$0$
Projective image$(C_7\times C_{14}^2):S_4$