Subgroup ($H$) information
Description: | $D_7\wr C_2$ |
Order: | \(392\)\(\medspace = 2^{3} \cdot 7^{2} \) |
Index: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$af^{2}, cd^{11}f^{6}, d^{2}e^{8}, d^{7}e^{4}f^{8}, e^{2}$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $(C_7\times C_{14}^2):S_4$ |
Order: | \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^3.C_2^4.C_6^2.C_2$ |
$\operatorname{Aut}(H)$ | $C_7^2:(C_3\times D_8)$, of order \(2352\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{2} \) |
$W$ | $D_7\wr C_2$, of order \(392\)\(\medspace = 2^{3} \cdot 7^{2} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $42$ |
Möbius function | $0$ |
Projective image | $(C_7\times C_{14}^2):S_4$ |