Properties

Label 32928.bb.42.a1.b1
Order $ 2^{4} \cdot 7^{2} $
Index $ 2 \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_7^2:C_2^2$
Order: \(784\)\(\medspace = 2^{4} \cdot 7^{2} \)
Index: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $af^{2}, e^{2}, e^{7}f^{7}, cd^{11}f^{6}, d^{7}e^{4}f^{8}, d^{2}e^{8}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_7\times C_{14}^2):S_4$
Order: \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 42T905.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_2^4.C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_7:D_7.C_2.C_6.C_2^3$
$W$$D_7^2:C_2^2$, of order \(784\)\(\medspace = 2^{4} \cdot 7^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{14}\wr C_2$
Normal closure:$(C_7\times C_{14}^2):S_4$
Core:$C_1$
Minimal over-subgroups:$C_2\times C_7^3:D_4$$D_{14}\wr C_2$
Maximal under-subgroups:$D_7\times D_{14}$$C_2\times C_7^2:C_4$$D_7\times D_{14}$$D_7\wr C_2$$D_7\wr C_2$$C_2\times D_4$
Autjugate subgroups:32928.bb.42.a1.a1

Other information

Number of subgroups in this conjugacy class$21$
Möbius function$0$
Projective image$(C_7\times C_{14}^2):S_4$