Show commands: Magma
Group invariants
Abstract group: | $(C_7\times C_{14}^2):S_4$ |
| |
Order: | $32928=2^{5} \cdot 3 \cdot 7^{3}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $42$ |
| |
Transitive number $t$: | $905$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,3)(2,4)(5,14)(6,13)(7,11)(8,12)(9,10)(15,29,22,34)(16,30,21,33)(17,36,19,41)(18,35,20,42)(23,40,28,37)(24,39,27,38)(25,32,26,31)$, $(1,28,29)(2,27,30)(3,19,34)(4,20,33)(5,25,38)(6,26,37)(7,17,41)(8,18,42)(9,23,32)(10,24,31)(11,15,36)(12,16,35)(13,22,40)(14,21,39)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $24$: $S_4$ x 3 $96$: $V_4^2:S_3$ $8232$: 21T46 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 6: $S_4$
Degree 7: None
Degree 14: None
Degree 21: 21T46
Low degree siblings
42T905, 42T906 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed