Subgroup ($H$) information
Description: | $C_7\times C_{14}^2$ |
Order: | \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \) |
Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$e^{7}f^{7}, d^{2}, e^{2}, f^{7}, f^{2}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, a semidirect factor, and abelian (hence metabelian and an A-group).
Ambient group ($G$) information
Description: | $(C_7\times C_{14}^2):S_4$ |
Order: | \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $S_4$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^3.C_2^4.C_6^2.C_2$ |
$\operatorname{Aut}(H)$ | $S_3\times C_6.\PSL(3,7).C_3$ |
$W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
Möbius function | $-12$ |
Projective image | $(C_7\times C_{14}^2):S_4$ |