Properties

Label 32928.bb.24.a1.a1
Order $ 2^{2} \cdot 7^{3} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times C_{14}^2$
Order: \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $e^{7}f^{7}, d^{2}, e^{2}, f^{7}, f^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, a semidirect factor, and abelian (hence metabelian and an A-group).

Ambient group ($G$) information

Description: $(C_7\times C_{14}^2):S_4$
Order: \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_2^4.C_6^2.C_2$
$\operatorname{Aut}(H)$ $S_3\times C_6.\PSL(3,7).C_3$
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_7\times C_{14}^2$
Normalizer:$(C_7\times C_{14}^2):S_4$
Complements:$S_4$ $S_4$
Minimal over-subgroups:$C_{14}^2:C_{21}$$C_7\times C_7\times D_{14}:C_2$$C_2\times C_{14}\times C_7:D_7$
Maximal under-subgroups:$C_7^2\times C_{14}$$C_{14}^2$$C_{14}^2$$C_{14}^2$$C_{14}^2$$C_{14}^2$$C_{14}^2$$C_{14}^2$

Other information

Möbius function$-12$
Projective image$(C_7\times C_{14}^2):S_4$