Properties

Label 32928.bb.12.g1.a1
Order $ 2^{3} \cdot 7^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2744\)\(\medspace = 2^{3} \cdot 7^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: not computed
Generators: $ad^{7}f^{6}, d^{2}e^{6}, e^{2}, f^{2}, f^{7}, e^{7}f^{7}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian. Whether it is elementary, metacyclic, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $(C_7\times C_{14}^2):S_4$
Order: \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_2^4.C_6^2.C_2$
$\operatorname{Aut}(H)$ not computed
$W$$C_2\times D_{14}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_7\times C_{14}$
Normalizer:$C_7\times C_7^2:(C_2\times D_4)$
Normal closure:$(C_7\times C_{14}^2):S_4$
Core:$C_7\times C_{14}^2$
Minimal over-subgroups:$C_7^3:S_4$$C_7\times C_7^2:(C_2\times D_4)$
Maximal under-subgroups:$C_7\times C_{14}^2$$D_{14}\times C_7^2$$C_7^2:C_{28}$$D_4\times C_7^2$$C_{14}\wr C_2$$C_{14}\wr C_2$$C_{14}\wr C_2$$C_{14}\wr C_2$$C_{14}\wr C_2$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$2$
Projective image$(C_7\times C_{14}^2):S_4$