Subgroup ($H$) information
| Description: | $D_4\times C_7^2$ | 
| Order: | \(392\)\(\medspace = 2^{3} \cdot 7^{2} \) | 
| Index: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Generators: | $ad^{7}f^{6}, d^{2}e^{8}, f^{2}, f^{7}, e^{7}f^{7}$ | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $(C_7\times C_{14}^2):S_4$ | 
| Order: | \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7^3.C_2^4.C_6^2.C_2$ | 
| $\operatorname{Aut}(H)$ | $D_4\times \GL(2,7)$, of order \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \) | 
| $W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $42$ | 
| Möbius function | $0$ | 
| Projective image | $(C_7\times C_{14}^2):S_4$ | 
