Properties

Label 324000.bm.8100.f1
Order $ 2^{3} \cdot 5 $
Index $ 2^{2} \cdot 3^{4} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times F_5$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(8100\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $acd^{15}e^{4}f^{8}, b^{6}, d^{6}e^{12}f^{6}, b^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times F_5$
Normal closure:$C_{15}^3.(C_4\times S_4)$
Core:$C_1$
Minimal over-subgroups:$C_{10}:F_5$$D_5:F_5$$C_{30}:C_4$$C_{30}:C_4$$C_{30}:C_4$$C_{30}:C_4$$S_3\times F_5$
Maximal under-subgroups:$D_{10}$$F_5$$F_5$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$8100$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$