Subgroup ($H$) information
| Description: | $C_5:C_4$ |
| Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$acd, d^{2}, c^{4}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_{20}.C_2^4$ |
| Order: | \(320\)\(\medspace = 2^{6} \cdot 5 \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_{10}.(C_2^4\times S_4)$, of order \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| $\operatorname{res}(S)$ | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(32\)\(\medspace = 2^{5} \) |
| $W$ | $D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Related subgroups
| Centralizer: | $D_4$ | ||||
| Normalizer: | $D_4.D_{10}$ | ||||
| Normal closure: | $C_5:Q_8$ | ||||
| Core: | $C_{10}$ | ||||
| Minimal over-subgroups: | $C_5:Q_8$ | $C_5:D_4$ | $C_{10}:C_4$ | $C_4\times D_5$ | $C_5:Q_8$ |
| Maximal under-subgroups: | $C_{10}$ | $C_4$ |
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | $0$ |
| Projective image | $C_2^3:D_{10}$ |